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A new unsupervised pattern classifier is introduced for
on-line detection of abnormality in features of vibration
that are used for fault diagnosis of helicopter gearboxes.
This classifier compares vibration features with their
respective normal values and assigns them a value in
[0, 1] to reflect their degree of abnormality. Therefore,
the salient feature of this classifier is that it does not
require feature values associated with faulty cases to
identify abnormality. In order to cope with noise and
changes in the operating conditions, an adaptation
algorithm is incorporated that continually updates the
normal values of the features. The proposed classifier
is tested using experimental vibration features obtained
from an OH-58A main rotor gearbox. The overall
performance of this classifier is then evaluated by
integrating the abnormality-scaled featares for detection
of faults. The fault detection results indicate that the
performance of this classifier is comparable to the
leading unsupervised neural networks: Kohonen's Fea-
ture Mapping and Adaptive Resonance Theory (ART2).
This is significant considering that the independence of
this classifier from fault-related features makes it
uniquely suited to abnormality-scaling of vibration
features for fault diagnosis.

Keywords: Condition monitoring; Diagnostics; Gear-
box; Vibration

1. Introduction

Present helicopter gearboxes are significant contribu-
tors to both maintenance costs and flight safety
incidents. Power trains comprise almost 30% of
maintenance costs and 22% of mechanically related
malfunctions that often result in loss of life and aircraft
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[1]. Therefore, improved fault diagnosis of helicopter
gearboxes is important for saving lives and reducing
maintenance costs. Fault diagnostic systems which can
detect failures reliably and rapidly will eliminate the
need for routine disassembly of the gearbox and allow
scheduling of maintenance before a catastrophic failure
Occurs.

Fault diagnosis of helicopter gearboxes (like most
rotating machinery) is based upon vibration monitor-
ing. Since detecting gearbox faults based on the raw
vibration signal is usually difficult, features of vibration
such as the Root Mean Square (RMS), Kurtosis,
Skewness, etc. are extracted to identify various types
of faults. A considerable effort has been directed
towards development of signal processing schemes for
identification of individual features that would be

affected by specific faults in the gearbox [2-8].
However, such a one-to-one approach to fault diagnosis
has not been feasible because of the complexity of the
gearbox, diversity and severity of component faults,
presence of noise in the measured vibration, and
variations in the operating conditions.

A more comprehensive approach to fault diagnosis
which compensates for some of the difficulties of the
one-to-one approach is the multiple-feature approach.
The common means of feature integration in this
approach is pattern classification through connectionist
networks [9-12], where the decision regions rep-
resenting various faults are defined by the connection
weights of these networks. Connection weights are
usually formed through supervised training using a
sample set of feature-fault data. Fault diagnosis is
then performed by classifying the vibration features
into the decision regions that represent various faults.
An important property of connectionist networks is
their ability to form decision regions with non-linear
boundaries which enables them to represent non-
linear relations between features and faults. Their

disadvantage, however, is their reliance on supervised
learning, which requires feature-fault data for training.
Since training data are usually not available and





throughexpensiveexperiments,superviseddiagnostic
networksarelimitedin applicability.

In order to avoidthe prior trainingrequiredby
superviseddiagnosticnetworks,the authorshave
proposedan unsupervisednetworkthat incorporates
theknowledgeof gearboxstructurefor diagnosis[13].
The inputs to this Structure-BasedConnectionist
Network(SBCN) are abnormality-scaledvibration
features(seeFig.1). Therefore,a methodneedsto
bedevelopedto identifyandscaletheabnormalityof
vibrationfeatures.Thispaperintroducestheunsuper-
visedpatternclassifierdesignedfor thispurpose.This
classifierperformsabnormality-scalingof eachfeature
byrelyingsolelyonitsvaluefromthenormaloperation
of the gearbox.As such,it is referredto asSingle
Category-BasedClassifier(SCBC)to signifyits inde-
pendencefrom featurevaluesassociatedwith faulty
conditions.In orderto performabnormality-scaling,
theSCBCcomparesfeatureswithweightsrepresenting
their normal-modevalues,andif theyare'sufficiently
different',assignsvaluesbetween0 and1to charac-
terizetheirdegreeofdeviationfromtheweightvalues.
WhiletheSCBChasa uniquedesignthat is specific
to the problemat hand, manyof its featuresare
similarto thoseinKohonen'sFeatureMapping(KFM)
[14] andAdaptiveResonanceTheory(ART2) [15].
For example,like KFM, it usesEuclideandistanceas
ameasureof similaritybetweenthefeaturesandtheir
normal-modevalues,or similar to ART2, it does
not require the abnormalvaluesof featuresfor
classification.

Anotherimportantfeatureof SCBC,whichissimilar
to ART2,is its on-lineadaptationcapabilitywhereby
theweightvaluesareupdatedsoastocopewithchanges
dueto noiseandvariationsin processconditions.In
general,withoutsamplefeaturesassociatedwithfaulty
casesit is very difficultto distinguishabnormalities
dueto noisefromthosecausedbyfaults.Accordingly,
there is alwaysthe risk that the weightsmay be
inadvertentlyreplacedwith thoseassociatedwith a
faultycase.Inordertoimprovereliabilityof adaptation
in SCBC,theweightsareupdatedwith regardto the
statusof other features.Adaptationin SCBC is
performedin two stages:primary adaptation and
secondary adaptation [15].

In primary adaptation, a weight is updated to be
closer to the value of the feature classified as normal.

In secondary adaptation, the weights associated with
the rest of the features are updated to be closer to

Fig. 1. Overview of fault detection and diagnosis in the proposed

structure-based diagnostic system.
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their current values if this feature was classified as
normal, and to be away from their current values
if the feature was classified as abnormal. Primary
adaptation is designed to cope with drift in feature
values due to process variations. Secondary adaptation
on the other hand, is incorporated so as to achieve
homogeneity in classification. The rationale for second-
ary adaptation is that if the majority of features are
classified as normal, then the gearbox is healthy and
the minority features are classified as abnormal due
to noise. So, the normal values of these minority
features need to be updated to improve homogeneity in
classification. Both primary adaptation and secondary
adaptation are recursively performed using a set of
recent feature vectors so as to avoid dominance of

individual feature vectors in adaptation and better
capture the drift in vibration features.

The performance of the SCBC is tested in abnor-
mality-scaling of experimental vibration features
obtained from an OH-58A helicopter main rotor
gearbox. For this, vibration data reflecting the effect of
various faults were processed through a microcomputer
customized for vibration signal processing to obtain
features of vibration. These vibration features were

then abnormality-scaled by SCBC as a prerequisite
for fault diagnosis. In this paper, in order to test the
performance of SCBC, the abnormality-scaled features
were evaluated for fault detection. For this purpose,
these features were weighted and integrated. The
detection results obtained compare favourably to those
obtained from KFM and ART2 methods, which
is reassuring given that SCBC is considerably less
constrained in its applicability due to its independence
from fault-related features.

2. Single Category-Based Classifier
(SCBC)
The design of the Single Category-Based Classifier
(SCBC) is best described in the context of the problem
constraints. This classifier is required to classify individ-
ual vibration features according to their level of
abnormality, which is not readily possible by either of
the two unsupervised pattern classifiers: Kohonen's
Feature Mapping (KFM) [14] and Adaptive Resonance
Theory (ART2) [15]. KFM performs classification by
measuring the distance of the feature vector from the
centre of various decision regions formed during an
off-line training phase. As such, KFM is limited in
applicability due to its need for feature values associated
with the fault category. The other method of unsuper-
vised pattern classification, Adaptive Resonance The-
ory (ART2), classifies a feature vector as normal
unless it is 'sufficiently different' [15] from its nominal
value. 'Sufficient difference' in ART2 is measured by
a 'vigilance' p as:

n

pj = (1)
i=l
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where the function f determines the match between
the feature si and the weight value wij associated with
the ]th decision region. The advantage of ART2 over
KFM is that it does not require any sample features
associated with the fault category. Its drawback,
however, is that it categorizes feature values that are
multiples of the weight wq within the same category.
A limitation that is common to both KFM and ART2

is that they are not designed for scalar classification,
which is a requirement in abnormality-scaling of
individual features for fault diagnosis.

2.1 Abnormallty-ScaIIng

The schematic of the Single Category-Based Classifier
(SCBC) is shown in Fig. 2. The inputs to SCBC
are features s_(t), i = 1, ,n, and its outputs are
abnormality-scaled features f_(t) with values between
0 and 1. The value of 0 indicates normality, and the
other extreme of 1 denotes complete abnormality. The
weights of the SCBC w_ represent the normal values
of the features, which are initially set equal to the
first set of feature values supplied to the SCBC.

Classification in SCBC is performed by first measur-
ing the distance of each feature s_(t) from its weight
value w;, and then normalizing it into the range [0,1]
using a 'matching factor' q_,.,defined as (see Fig. 3):

-(si(t) - wi) 2
_Pi(t) = 1 - exp w_ (2)

A _b_value of 0 indicates that the feature value matches
the weight value precisely, and a value of 1 indicates
that it deviates considerably. Note that the exponential
function used here is not unique and that other
functions which can map the distance into the range
[0,1] can also be used for the matching factor. Since
during normal operation of the gearbox, noise in the

Wei t

• _i _ l.--.-.--lm- _ O

•

Abnormality-Sealing

Fig. 2. Schematic of the SCBC.

features causes drifts in the normal values, a threshold
0 is considered to account for such drifts within the
noise level. The threshold 0 is used to hard-limit _b_(t)
in SCBC as:

o if 6,(0 < 0epi(t) = ¢bi(t) otherwise (3)

In the above relationship, the threshold 0 is obtained
as:

n _[max(si ) _ pt, i]2 _0= 1_(1 - exp (4)
hi= 1\ /t/'/2 ]

where max(sj) denotes the maximum value of the ith
feature in a set of K samples of this feature recorded
during normal operation, and p.i represents its mean,
estimated as

K

_'[i = -K _si( t) (5)

m

The matching factor defined by Eq. 2 squashes any
positive value in [0, _] into the range [0, 1]. As such,
only very large deviations in feature values will be
scaled to the value of 1. Since such large deviations
in feature values are uncommon for gearboxes, the
value of matching factor is further scaled to yield
abnormality-scaled feature values f_(t) as (see Fig. 3):

f,.(t) = fmin + exp[a* dPi(t)] (6)

where fro;, represents the minimum abnormality value
assigned to any feature that violates the threshold 0,
and a controls the slope of the exponential curve.
Since f/(t) is defined to have a value between 0 and
1, it is set to 1 when f_(t) in Eq. (6) exceeds the value
of 1.

2.2 Adaptation

After each round of classification of the vibration

features, the weight values in the SCBC are updated
so as to cope with noise and small variations in the
operating conditions• Adaptation is carried out in two
stages. In the first stage, called primary adaptation, a
network weight is adapted if the feature associated
with it is classified as normal. In the second stage,
referred to as secondary adaptation [15], the rest of
the weights are adapted to achieve homogeneity in
the abnormality-scaled values, thus increasing the
likelihood of all of them being classified as normal or
abnormal. Achieving this homogeneity, however, needs
to be carried out with respect to specific feature
groups, because individual gearbox faults do not
necessarily cause abnormality in all the features. For
example, a gear fault will be reflected only by the
features related to the gear and is not expected to
cause abnormality in bearing features. In order to
preserve the functionality of individual groups of
features (i.e., general features, gear features, bearing
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Fig. 3. Matching and abnormality-scaling in SCBC.

features), secondary adaptation is performed exclus-
ively for each feature group.

Adaptation in SCBC is performed as follows: let wt
represent the weight which is presently being updated
and wi the remaining weights in the group. In primary
adaptation, the weight value wt is modified according
to the relationship

w_ = wx + 8wx (7)

where

6WI = {_[st(t) -
wl]if fl(t) = O

(8)
otherwise

The parameter r/in Eq. (8) denotes the learning rate.
For secondary adaptation, if the majority of features

are classified as normal, then the weight values
associated with the features classified as abnormal will

be adjusted such that the likelihood of all the features
being classified as normal is increased for the same
feature values. Secondary adaptation is performed as

W i = W 1 "_" 8W i for all i 4=I (9)

where

6w, = _nA[si(t) - w,] iffx(t) = 0 (10)
[- _?A[si(t) - wi] otherwise

In secondary adaptation, the amount by which the
weight values are adjusted is controlled by a neighbour-
hood function A [14] which is assigned a value between
0 and 1. A value of 0 is used for inputs with no noise,
and a value at the other extreme of 1 is used for

unreliable features with large amounts of noise. Usually
in practice the value of A is set less than 0.5. For
each round of primary adaptation (Eqs (7) and (8)),
I is varied to include all the features in the group. If
the jth group of features contains mj features, then
primary adaptation is applied by varying 1 from 1 to
m/to cover all the weight values wl in the jth feature
group. For each I, the remaining weight values w,- in

the group (i = 1 to rnj and i 4: I) are adapted using
secondary adaptation according to Eqs (9) and (10).

The adaptation algorithm presented in Eqs (7)-(10)
is biased towards the most recent feature vector if
only this vector were used for adaptation. Ideally,
adaptation should be performed using all the feature
vectors that pertain to the current operating conditions.
But as the number of available feature vectors for each

operating condition progressively increases, adaptation
based on all the features becomes computationally
demanding. As a compromise, in SCBC only the /3
most recent feature vectors are utilized for each

adaptation sweep such that adaptation is performed
iteratively over the/3 most recent feature vectors. The
learning rate rt is progressively reduced for each
adaptation iteration.

3. Experimental

The effectivness of SCBC is evaluated using experimen-
tal vibration data from an OH-58A helicopter main
rotor gearbox (see Fig. 4). In this section, the exper-
imental setup and signal processing of the vibration
are described.

3.1 S_up

Vibration data were collected at the NASA Lewis
Research Center as part of a joint NASA/Navy/
Army Advanced Lubricants Program [16]. Various
component failures in the OH-58A main rotor trans-
mission were produced during accelerated fatigue
tests. The vibration signals were recorded from eight
piezoelectric accelerometers (frequency range of up
to 10 kHz) using an FM tape recorder. The signals
were recorded once every hour, for about one to two
minutes per recording (using a bandwidth of 20 kHz).
Two magnetic chip detectors were also used to detect
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Fig. 4. Layout of the various components in the OH-58A gearbox.

the debris caused by component failures. The location
and orientation of the accelerometers are shown in
Fig. 5.

In these experiments the gearbox was run under a
constant load and was disassembled and inspected
periodically, or when one of the chip detectors
indicated a failure. A total of five tests were performed,
where each test was run between nine and fifteen days
for approximately four to eight hours a day. Among
the eleven failures which occurred during these tests
(see Table 1) there were three cases of planet bearing
pitting fatigue, three cases of sun gear pitting fatigue,
two cases of top housing cover cracking, and one case
each of spiral bevel pinion pitting fatigue, mast bearing
micropitting, and planet gear pitting fatigue. With
respect to fault detection during these tests, the chip
detectors were reliable in detecting failures in which
a significant amount of debris was generated, such as
the planet bearing failures and one sun gear failure.
The remaining failures were detected during routine
disassembly and inspection.

I Vertical

#1, 2, 3 attached to block on fight
trunnion mount

#4, 6, 7, 8 studded to housing
through steel insets

#5 attached to block on
input housing

Longitudinal

3.2 Signal Processing

In order to study the effect of faults on the measured
vibration signals, the vibration features were digitized
and processed by a commercially available signal
analyser with three pro:essing modules [17]: Fig. 5. Location of the accelerometers on the test stand.



Table1. List of faults that occurred during the OH-58A experiments

Test Number of days Failures

1 9

2 9
3 13

4 15

5 11

Sun gear tooth pit
Spiral bevel pinion scoring/heavy
wear
None

Planet bearing #2 inner race spall
Top cover housing crack
Planet bearing #2 inner race spall
Micropitting on mast bearing
Planet bearing #3 inner race spall
Sun gear tooth pit
Sun gear teeth spalls
Planet gear tooth spall
Top housing cover crack

(1) Statistical Analysis (STAT), (2) Baseband Power
Spectrum Analysis (BBPS), and (3) Bearing Analysis
(BRGA) (see Fig. 6). Overall, nineteen vibration
features were extracted for each accelerometer, which
were indicators of either general faults (e.g., wear
and out of balance), or generalized gear or bearing
faults. A brief description of these vibration features
in presented in Table 2. For a more detailed description
the reader is referred to [18].

4. Detection Results

The effectiveness of SCBC was investigated in abnor-
mality scaling of vibration features obtained from the
OH-58A helicopter gearbox. The nineteen features
obtained from the three signal processing modules

TapeRecorder [

1

Digitization / ]Processing

I I

I ....I I I
(1) Skewness (5) RMS (16) BE
(2)Ku.rtosis (6) WIIT (IT)BKV
(3) Crest F_tor (7) RFR (18) EB
(4) Peak-to-Peak (8) TEO-G (19) ET

(9) TEO-P
(10)TMI-G
(ll) TMI-P
(12) CEl)(1911)
(13) CEP(572)
(14) TON(1911)
(15) TON(572)

Fig. 6. The vibration features obtained from the signal analyser.
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Table 2. List of vibration features and their description

Feature Description

(1) Skewness

(2) Kurtosis

(3) Crest Factor

(4) Peak-to-Peak

(5) RMS

(6) WriT

(7) RFR

(8) TEO-G
(9) TEO-P
(10) TM1-G
(11) TM1-P

(12) CEP(1911)
(13) CEP(572)

(14) TON(1911)
(15) TON(572)

(16) BE

(17) BKV

(18) EB

(19) ET

Measures the asymmetry of probability den-
sity function (p.d.f.) of the vibration ampli-
tude, which is assumed to be near Gaussian

when the machinery is healthy

Represents the fourth moment of a p.d.f.
It is responsive to localized defects affecting
the tails of the p.d.f, of the vibration
amplitude
Represents the 'peakness' (flat or peaked)
of the p.d.f.

Represents the difference between maximum
and minimum values of the vibration signal

Represents the overall energy level of
vibrations

Represents the RMS level of the signal
minus its strong tones
Denotes the position of the 'centre of gravity'

of the spectrum
Quantifies the RMS (-G) and mean value
(-P) of the spectral ratio between the
current spectrum and a baseline spectrum.
The baseline spectrum could be from the
beginning of the test (TEO) or from the
previous record (TM1)

From metacepstral analysis, used to detect
the energy levels of periodic aspects of
the vibration signal at the tooth meshing
frequency of the spiral bevel pinion and gear
( 1911 Hz), and the fundamental frequency of
the planet bearings (572 Hz)

Represents the energy level associated with
a particular tone (1911 Hz or 572 Hz) within
a spectrum. It is a good indicator of faults
such as unbalance and misalignment

Represents the overall energy level of the
envelope which is sensitive to most beating
faults

Denotes the kurtosis value of the envelope,
expected to reflect impulsive vibration signals
due to localized bearing faults

Represents the base energy of the envelope
after all tones have been removed. It is

expected to reflect heavy bearing damage

Represents the total energy minus the base
energy of the envelope, expected to reflect
localized bearing faults

were used as inputs to SCBC. The initial weight values
of SCBC were assigned the values of the first set of
features obtained at the beginning of each of the five
tests. The subsequent feature vectors obtained from
each accelerometer were then abnormality-scaled with
the value of the threshold 0 set to 0.5 and the value
of a to 20. After each feature vector was classified,

the weights of SCBC were adapted using primary and
secondary adaptation. The vibration features were
divided into three separate groups consisting of 8, 5,
and 6 features representing general faults, gear faults,
and bearing faults, respectively, and secondary adap-
tation was performed exclusively for each group. The

• , .......................... , , r ...........................
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total number of adaptation sweeps through each batch
was set equal to 100, where the learning rate was
decreased as the inverse of the number of training
sweeps. The neighbourhood function was set to 0.05.

In order to evaluate the results, the abnormality-
scaled features were integrated for fault detection. For
this, the individual abnormality-scaled features were
mapped into a scalar through a 'weighting network'.
The weights of this network, hereafter referred to
as the voting weights, were defined based on the
significance of individual features to overall fault
detection. For example, if all the n features were
assumed to be equally significant, then each voting
weight would be set as 1/n. In this application, the
same grouping used for adaptation was used for
assigning voting weights. In cases where the mj features
in each of the k groups were equally significant, and
each group was to be assigned equal overall weight,
the voting weights were defined as 1/(k*mj). The
integration of the abnormality-scaled features according
to the above strategy resulted in a scalar called
activation value, a:

n

a(t) = _,fi(t)*v i (11)
i=1

where the _ represent the abnormality-scaled feature
values and the vi denote the voting weights. For fault
detection, the activation value was hard-limited with
the threshold 0v defined as the max(a(t)) within the
sample set of K normal features. A fault was assumed
to have occurred in the gearbox if the activation value
from any of the accelerometers was hard-limited. For
fault detection, the voting weights for the general,
gear, and bearing fault groups were determined as at
0.042, 0.067, and 0.056, respectively, with the voting
threshold 0v set between 0.1 and 0.17 for individual
accelerometers.

The detection results for individual test sets obtained
from SCBC are shown in Table 3. A desk in this table
indicates normal conditions, whereas a 1 indicates the
presence of a fault. The expected detection results are
indicated inside parenthesis. For example, the results
for Test 1 indicate that SCBC detected the presence
of faults on Days 5, 6 and 8, whereas faults were
expected to be present from Day 5 to Day 9. Of
course, it should be noted that the gearbox was not
inspected on a daily basis. As such, the actual condition
of the gearbox is unknown for each day of the tests.
In Test 1, which was run for 9 days, a fault was
actually observed only on Day 9 (indicated by 1")
during routine inspection of the gearbox. However,
based on an inspection of the vibration features, it
was estimated that the fault could have been present
as early as Day 5. For other tests, the days when the
faults were actually observed are also indicated by 1".

In order to evaluate the effectiveness of SCBC, its
performance was compared with Kohonen's Feature
Mapping (KFM) and Adaptive Resonance Theory
(ART2). Although KFM is not suitable for on-line

Table 3. Fault detection results from SCBC for the 5 tests. A dash

indicates normality and a 1 represents the presence of a fault. For
reference, the expected faults, determined by an expert, are included
inside the parenthesis with a * to indicate the observed fault

SCBC: Predicted and actual failures

Day Test 1 Test 2 Test 3 Test 4 Test 5

1 (-) 6) (-) (-) (-)
2 (-) (-) (-) (.) (_)
3 (-) (-) 1 (1) (-) (-)
4 (-) 1 (-) 1 (1") 1 (-) (-)
5 1 (1) 1 (-) (-) (-) (-)
6 1 (1) (-) (-) (-) (-)
7 (1) (-) (-) (-) (.)
8 1 (1) (-) (-) (.) (1)
9 (1') (-) (1") (-) 1 (1)
10 (-) 1 (1) 1 (1)
11 (1) 1 (1) (1")
12 1 (1) 1 (1")
13 (I') 1 (-)
14 I (I)
15 1 (1")

fault detection due to its demand for sample features
from both the normal and fault categories, it is
considered here so as to provide a basis for evaluating
the performance of SCBC in classification. KFM was
trained with 100 sweeps through the training batch
with the learning rate set equal to the inverse of
the number of the training sweeps [14], and its
neighbourhood function was set to 0.5. The detection
results from KFM are shown in Table 4. For ART2,
the features a,b,c,d,e, and 0 [15] were set to 10, 10,
0.01, 0.99, 0.001, and 0.2, respectively. The vigilance
for ART2 was selected individually for each acceler-
ometer between 0.76 and 0.96 for best detection

Table 4. Fault detection results from Kohonen's Feature Mapping
(KFM) for the 5 tests. A dash indicates normality and a 1 represents
the presence of a fault. For reference, the expected faults, determined
by an expert, are included inside the parenthesis with a • to indicate
the observed fault

KFM: Predicted and actual failures

Day Test 1 Test 2 Test 3 Test 4 Test 5

z (-) (.) (.) (.) (.)
z (-) 1 (-) (-) (9 (-)
3 (-) (-) I (1) (-) (-)
4 (-) (-) 1 (1") (-) (-)
5 1 (1) (-) 1 (-) (-) 1 (-)
6 (1) 1 (-) 1 (-) (-) (-)
7 1 (1) 1 (-) 1 (-) 1 (-) 1 (-)
8 (1) 1 (-) 1 (-) 1 (-) 1 (I)
9 1 (1") 1 (-) 1 (1") 1 (-) 1 (1)
10 1 (-) (1) (1)
11 1 (1) 1 (1) 1 (1")
12 1 (1) 1 (1")
13 1 (1 °) 1 (-)
14 (1)

15 1 (1")



Table 5. Fault detection results from ART2 for the 5 tests. A dash

indicates normality and a 1 represents the presence of a fault. For
reference, the expected faults, determined by an expert, are included
inside the parenthesis with a * to indicate the observed fault

ART2: Predicted and actual failures

Day Test 1 Test 2 Test 3 Test 4 Test 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(-)
(-)
(-)
(-)
(1)
(1)
(1)
(1)
(1")

(-) (-)
(-) 1 (-)
(-) (1)
(-) (1")
(-) (-)
(-) (-)
(-) (-)
(-) (-)
(-) (v)

(-)
1 (l)
1 (1)
1 (l*)

(-) (-)
(-) (-)
(-) (-)
(-) (-)
(-) (-)
(-) (-)
(-) (-)
(-) (1)
(-) (1)
(1) 1 (1)
(1) 1 (1")
(l*)
(-)
(1)
(I*)

results. The detection results from ART2 are shown
in Table 5.

For brevity the summary of detection results from
SCBC, KFM, and ART2 is presented in Table 6. The
performance of each of these classifiers is measured
in terms of the number of correct classifications (both
normal and fault), false alarms, and undetected faults.
In Table 6, when the classifier produces the same
output as the one inside the parentheses it is counted
as correct classification. A false alarm represents a
case where a fault is detected while the gearbox is
normal, and an undetected fault denotes the case
where the presence of a fault is not detected. The
results in Table 6 indicate that for Test 1, SCBC
performed correct classification 7 of the 9 days, and
that the KFM produced similar detection results for
this test. For Tests 2, 3, 4, and 5, SCBC showed
superior performance as compared to KFM and ART2.

According to the results in the last column of this
table, which shows the total number of correct

Table 6. The summary of the detection results of SCBC, KFM
and ART2 in terms of CC - Correct Classification, FA - False
Alarms, and UF- Undetected Faults

Summary of Detection

Test 1 Test 2 Test 3 Test 4 Test 5 Total

CC SCBC 7 7 10 13 9 46
KFM 7 4 8 9 8 36
ART2 7 9 9 11 9 45

FA SCBC 0 2 0 2 0 4
KFM 0 5 5 4 2 16
ART2 0 0 1 1 0 2

UF SCBC 2 0 3 0 2 7
KFM 2 0 0 2 1 5
ART2 2 0 3 3 2 10
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classifications, false alarms, and undetected faults,
SCBC produced correct classification on 46 days of
the 57 days, produced 4 false alarms, and left 7
faults undetected. KFM was able to perform correct
classification on 36 days, produced 16 false alarms,
and left 5 faults undetected. Although false alarms do
not result in safety hazards, like undetected faults,
they are still considered serious flaws in a detection
system because they often lead to unnecessary mainte-
nance operations and reduced confidence in the
detection system. ART2 was able to perform correct
classification for 45 days, produced 2 false alarms, and
left 10 faults undetected. Even though ART2 produced
results comparable to SCBC in correct classifications
and false alarms, it was not able to detect faults in
Test 3 on either Days 3 or 4, and in Tests 4 in any
of the Days 10, 11, and 12. Considering this, SCBC
provided a better overall number of correct detection,
undetected faults and false alarms as compared to
KFM and ART2. That SCBC can provide comparable
detection results as KFM and ART2 despite its less
restrictive nature, is indeed reassuring.

5. Conclusion

A new unsupervised pattern classifier is introduced
for abnormality-scaling of vibration features. This
unsupervised pattern classifier, referred to as the Single
Category-Based Classifier (SCBC), scales features for
abnormality by comparing them with the normal values
of vibration features alone. As such, SCBC does not
require any features associated with various faults.
Two adaptation schemes, namely primary adaptation
and secondary adaptation, are also introduced for
updating the weights of SCBC to cope with noise and
small variations in the operating conditions. The
effectiveness of SCBC is demonstrated in fault detec-

tion of an OH-58A helicopter gearbox. In order to
perform fault detection, a weighting network with pre-
defined voting weights is utilized for integrating the
abnormality-scaled features. The fault detection results
from this network are compared with two predominant
unsupervised methods: Kohonen's Feature Mapping
(KFM) and Adapative Resonance Theory (ART2).
The results from the OH-58A gearbox indicate that
the overall performance of SCBC measured in terms
of the number of correct classifications, false alarms
and undetected faults is comparable to that of KFM
and ART2. These results, coupled with the less
restrictive nature of SCBC, indicate that SCBC is a
superior classifier for abnormality-scaling of vibration
features for fault diagnosis.
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